Search results
Results From The WOW.Com Content Network
Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8.
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
1 + 1 + 1 + 1 + 1 Some authors treat a partition as a decreasing sequence of summands, rather than an expression with plus signs. For example, the partition 2 + 2 + 1 might instead be written as the tuple (2, 2, 1) or in the even more compact form (2 2 , 1) where the superscript indicates the number of repetitions of a part.
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5 + 1 / 2 , 5/4, and √ 2 are not. [8] The integers form the smallest group and the smallest ring containing the natural numbers.
5 + 5 → 0, carry 1 (since 5 + 5 = 10 = 0 + (1 × 10 1)) 7 + 9 → 6, carry 1 (since 7 + 9 = 16 = 6 + (1 × 10 1)) This is known as carrying. [41] When the result of an addition exceeds the value of a digit, the procedure is to "carry" the excess amount divided by the radix (that is, 10/10) to the left, adding it to the next positional value.
The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.
G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3 × 10 9, 1 290 740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4; [22] the largest number now known not to be a sum of ...