Search results
Results From The WOW.Com Content Network
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
The disjoint union space X, together with the canonical injections, can be characterized by the following universal property: If Y is a topological space, and f i : X i → Y is a continuous map for each i ∈ I, then there exists precisely one continuous map f : X → Y such that the following set of diagrams commute:
In graph theory, a branch of mathematics, the disjoint union of graphs is an operation that combines two or more graphs to form a larger graph. It is analogous to the disjoint union of sets , and is constructed by making the vertex set of the result be the disjoint union of the vertex sets of the given graphs, and by making the edge set of the ...
The union is the join/supremum of and with respect to because: L ⊆ L ∪ R {\displaystyle L\subseteq L\cup R} and R ⊆ L ∪ R , {\displaystyle R\subseteq L\cup R,} and if Z {\displaystyle Z} is a set such that L ⊆ Z {\displaystyle L\subseteq Z} and R ⊆ Z {\displaystyle R\subseteq Z} then L ∪ R ⊆ Z . {\displaystyle L\cup R\subseteq Z.}
Given a map :, the mapping cylinder is a space , together with a cofibration ~: and a surjective homotopy equivalence (indeed, Y is a deformation retract of ), such that the composition equals f. Thus the space Y gets replaced with a homotopy equivalent space M f {\displaystyle M_{f}} , and the map f with a lifted map f ~ {\displaystyle {\tilde ...
The Hilbert scheme is a disjoint union of projective subschemes ... is greater than or equal ... R.I.: American Mathematical Society, ISBN 978-0-8218-1956-2, MR ...
The coproduct in the category of sets is simply the disjoint union with the maps i j being the inclusion maps.Unlike direct products, coproducts in other categories are not all obviously based on the notion for sets, because unions don't behave well with respect to preserving operations (e.g. the union of two groups need not be a group), and so coproducts in different categories can be ...
hence has Betti number 1 in dimensions 0 and n, and all other Betti numbers are 0. Its Euler characteristic is then χ = 1 + (−1) n ; that is, either 0 if n is odd , or 2 if n is even . The n dimensional real projective space is the quotient of the n sphere by the antipodal map .