Search results
Results From The WOW.Com Content Network
As the radiation pressure scales as the fourth power of the temperature, it becomes important at these high temperatures. In the Sun, radiation pressure is still quite small when compared to the gas pressure. In the heaviest non-degenerate stars, radiation pressure is the dominant pressure component. [25]
In humans, large vessels, such as the aorta or trachea, do not appear to obey Murray's law, instead obeying a Murray's law with exponent close to 2. [16] But flow in those vessels is also partially turbulent, and so should exhibit an exponent nearer to 7 / 3 than to 3. [18] The Murray law in plants and insects. [14]
The International Commission on Radiation Protection proposed a simplified model of RBE-LET relationships for use in dosimetry. They defined a quality factor of radiation as a function of dose-averaged unrestricted LET in water, and intended it as a highly uncertain, but generally conservative, approximation of RBE. Different iterations of ...
The Hounsfield unit (HU) scale is a linear transformation of the original linear attenuation coefficient measurement into one in which the radiodensity of distilled water at standard pressure and temperature is defined as 0 Hounsfield units (HU), while the radiodensity of air at STP is defined as −1000 HU.
Air pressure in an automobile tire relative to atmosphere (gauge pressure) [citation needed] +210 to +900 kPa +30 to +130 psi Air pressure in a bicycle tire relative to atmosphere (gauge pressure) [57] 300 kPa 50 psi Water pressure of a garden hose [58] 300 to 700 kPa 50–100 psi Typical water pressure of a municipal water supply in the US [59]
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.
Consequently, OER varies from unity in anoxia to a maximum value for 100% oxygen of typically up to three for low ionizing-density-radiation (beta-, gamma-, or x-rays), or so-called low linear energy transfer (LET) radiations. Radiosensitivity varies most rapidly for oxygen partial pressures below ~1% atmospheric (Fig. 1).
This influence was found to be of almost negligible value at an air pressure of about 16 mmHg (2.1 kPa; 0.021 atm; 0.31 psi). The radiant energy of the incident beam was deduced from its heating effect upon a small blackened silver disk, which was found to be more reliable than the bolometer when it was first used.