Search results
Results From The WOW.Com Content Network
Industrial biological catalysis through enzymes has experienced rapid growth in recent years due to their ability to operate at mild conditions, and exceptional chiral and positional specificity, things that traditional chemical processes lack. [1] Isolated enzymes are typically used in hydrolytic and isomerization reactions.
Enzymes are used in the chemical industry and other industrial applications when extremely specific catalysts are required. Enzymes in general are limited in the number of reactions they have evolved to catalyze and also by their lack of stability in organic solvents and at high temperatures.
Enzymes are listed here by their classification in the International Union of Biochemistry and Molecular Biology's Enzyme Commission (EC) numbering system: Category:Oxidoreductases (EC 1) ( Oxidoreductase )
Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.
Immobilized enzymes are used in various applications including: food, chemical, pharmaceutical, and medical industry. In the food industry for example, Immobilized enzymes are used for the manufacturing of several types of zero-calorie sweetners, Allulose for instance is an epimer of fructose , which is different structurally, resulting in it ...
Fine chemicals: as the commodity chemicals, they are chemical substances characterized by their chemical structure, but, on the contrary of commodity chemicals, they are produced in a small quantity; fine chemicals can be used as components in the formulation of speciality chemicals; [2] for example active ingredients of pharmaceutical drugs ...
Hydrolase enzymes are important for the body because they have degradative properties. In lipids, lipases contribute to the breakdown of fats and lipoproteins and other larger molecules into smaller molecules like fatty acids and glycerol. Fatty acids and other small molecules are used for synthesis and as a source of energy. [1]
Industrial microbiology is a branch of biotechnology that applies microbial sciences to create industrial products in mass quantities, often using microbial cell factories. There are multiple ways to manipulate a microorganism in order to increase maximum product yields.