Search results
Results From The WOW.Com Content Network
Sought: an element x 0 ∈ A such that f(x 0) ≤ f(x) for all x ∈ A ("minimization") or such that f(x 0) ≥ f(x) for all x ∈ A ("maximization"). Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming , but still in use for example in linear ...
For less-than or equal constraints, introduce slack variables s i so that all constraints are equalities. Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0.
Another condition in which the min-max and max-min are equal is when the Lagrangian has a saddle point: (x∗, λ∗) is a saddle point of the Lagrange function L if and only if x∗ is an optimal solution to the primal, λ∗ is an optimal solution to the dual, and the optimal values in the indicated problems are equal to each other. [18 ...
Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.
The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
2. The strong duality theorem provides a "good characterization" of the optimal value of an LP in that it allows us to easily prove that some value t is the optimum of some LP. The proof proceeds in two steps: [4]: 260–261 Show a feasible solution to the primal LP with value t; this proves that the optimum is at least t.
The felicific calculus is an algorithm formulated by utilitarian philosopher Jeremy Bentham (1748–1832) for calculating the degree or amount of pleasure that a specific action is likely to induce.