When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/JouleThomson_effect

    In thermodynamics, the JouleThomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. Inversion temperature - Wikipedia

    en.wikipedia.org/wiki/Inversion_temperature

    This temperature change is known as the JouleThomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as

  4. An Inquiry Concerning the Source of the Heat Which Is Excited ...

    en.wikipedia.org/wiki/An_Inquiry_Concerning_the...

    Joule's apparatus for measuring the mechanical equivalent of heat. Most established scientists, such as William Henry, [13] as well as Thomas Thomson, believed that there was enough uncertainty in the caloric theory to allow its adaptation to account for the new results. It had certainly proved robust and adaptable up to that time.

  5. Thermoelectric materials - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_materials

    The efficiency of a thermoelectric device for electricity generation is given by , defined as =.. The maximum efficiency of a thermoelectric device is typically described in terms of its device figure of merit where the maximum device efficiency is approximately given by [7] = + ¯ + ¯ +, where is the fixed temperature at the hot junction, is the fixed temperature at the surface being cooled ...

  6. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The JouleThomson coefficient, = |, is of practical importance because the two end states of a throttling process (=) lie on a constant enthalpy curve. Although ideal gases, for which h = h ( T ) {\displaystyle h=h(T)} , do not change temperature in such a process, real gases do, and it is important in applications to know whether they heat ...

  7. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Real gases are non-ideal gases whose molecules occupy space and have interactions; consequently, they do not adhere to the ideal gas law. To understand the behaviour of real gases, the following must be taken into account: compressibility effects; variable specific heat capacity; van der Waals forces; non-equilibrium thermodynamic effects;

  8. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  9. Isenthalpic process - Wikipedia

    en.wikipedia.org/wiki/Isenthalpic_process

    If a steady-state, steady-flow process is analysed using a control volume, everything outside the control volume is considered to be the surroundings. [2]Such a process will be isenthalpic if there is no transfer of heat to or from the surroundings, no work done on or by the surroundings, and no change in the kinetic energy of the fluid. [3]