Search results
Results From The WOW.Com Content Network
This is a list of simultaneous localization and mapping ... (Matlab code) QSLAM [2] GraphSLAM; Occupancy Grid SLAM [3] DP-SLAM; Parallel Tracking and Mapping ...
Occupancy Grid Mapping refers to a family of computer algorithms in probabilistic robotics for mobile robots which address the problem of generating maps from noisy and uncertain sensor measurement data, with the assumption that the robot pose is known. Occupancy grids were first proposed by H. Moravec and A. Elfes in 1985.
The grid file contains the coordinates of the solution grid, while the solution file contains information typical of a CFD solution, flow density, flow momentum (a vector), and flow energy. [2] Data may be stored in either binary or ASCII text format and floating point values may be either single or double precision.
A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell.
(More generally, coarse grid unknowns can be particular linear combinations of fine grid unknowns.) Thus, AMG methods become black-box solvers for certain classes of sparse matrices . AMG is regarded as advantageous mainly where geometric multigrid is too difficult to apply, [ 20 ] but is often used simply because it avoids the coding necessary ...
The structure of a crystal is often represented by the pole figure of its crystallographic planes. A plane is chosen as the equator, usually the (001) or (011) plane; its pole is the center of the figure. Then, the poles of the other planes are placed on the figure, with the Miller indices for each pole. The poles that belong to a zone are ...
The grid is refined and after a predetermined number of iteration in order to adapt it in a steady flow problem. The grid will stop adjusting to the changes once the solution converges. In time accurate case coupling of the partial differential equations of the physical problem and those describing the grid movement is required.
Example of a regular grid. A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). [1] Its opposite is irregular grid.. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces.