When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coefficient of variation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_variation

    The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean , =. [1] It shows the extent of variability in relation to the mean of the population. The coefficient of variation should be computed only for data measured on scales that have a meaningful zero ( ratio scale ) and hence allow relative comparison of ...

  3. Index of dispersion - Wikipedia

    en.wikipedia.org/wiki/Index_of_dispersion

    In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...

  4. Fano factor - Wikipedia

    en.wikipedia.org/wiki/Fano_factor

    In statistics, the Fano factor, [1] like the coefficient of variation, is a measure of the dispersion of a counting process. It was originally used to measure the Fano noise in ion detectors. It is named after Ugo Fano, an Italian-American physicist. The Fano factor after a time is defined as

  5. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    Under simple random sampling the bias is of the order O( n −1). An upper bound on the relative bias of the estimate is provided by the coefficient of variation (the ratio of the standard deviation to the mean). [2] Under simple random sampling the relative bias is O( n −1/2).

  6. McKay's approximation for the coefficient of variation

    en.wikipedia.org/wiki/McKay's_approximation_for...

    In statistics, McKay's approximation of the coefficient of variation is a statistic based on a sample from a normally distributed population. It was introduced in 1932 by A. T. McKay. [1] Statistical methods for the coefficient of variation often utilizes McKay's approximation. [2] [3] [4] [5]

  7. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    In fluid dynamics, normalized root mean square deviation (NRMSD), coefficient of variation (CV), and percent RMS are used to quantify the uniformity of flow behavior such as velocity profile, temperature distribution, or gas species concentration. The value is compared to industry standards to optimize the design of flow and thermal equipment ...

  8. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    In estimating the mean of uncorrelated, identically distributed variables we can take advantage of the fact that the variance of the sum is the sum of the variances.In this case efficiency can be defined as the square of the coefficient of variation, i.e., [13]

  9. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.