When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  3. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.

  4. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Given three matrices A, B and C, the products (AB)C and A(BC) are defined if and only if the number of columns of A equals the number of rows of B, and the number of columns of B equals the number of rows of C (in particular, if one of the products is defined, then the

  5. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  7. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  8. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    An identity matrix of any size, or any multiple of it is a diagonal matrix called a scalar matrix, for example, []. In geometry , a diagonal matrix may be used as a scaling matrix , since matrix multiplication with it results in changing scale (size) and possibly also shape ; only a scalar matrix results in uniform change in scale.

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Decomposition: = where C is an m-by-r full column rank matrix and F is an r-by-n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } .