Search results
Results From The WOW.Com Content Network
The problem of calculating angle is a standard application of Hansen's resection. Such calculations can establish that ∠ B E F {\displaystyle \angle {BEF}} is within any desired precision of 30 ∘ {\displaystyle 30^{\circ }} , but being of only finite precision, always leave doubt about the exact value.
Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ ′ = 180° − γ. The figure on right shows the point C, the side b and the angle γ as the first solution, and the point C ′, side b ′ and the angle γ ′ as the ...
In mathematics, the Regiomontanus's angle maximization problem, is a famous optimization problem [1] posed by the 15th-century German mathematician Johannes Müller [2] (also known as Regiomontanus). The problem is as follows: The two dots at eye level are possible locations of the viewer's eye. A painting hangs from a wall.
Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Three problems proved elusive, specifically, trisecting the angle, doubling the cube, and squaring the circle. The problem of angle trisection reads: Construct an angle equal to one-third of a given arbitrary angle (or divide it into three equal angles), using only two tools: an unmarked straightedge, and; a compass.
Triangulation may be used to find the position of the ship when the positions of A and B are known. An observer at A measures the angle α, while the observer at B measures β. The position of any vertex of a triangle can be calculated if the position of one side, and two angles, are known.