When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Respiratory acidosis - Wikipedia

    en.wikipedia.org/wiki/Respiratory_acidosis

    Chronic respiratory acidosis: HCO 3 − rises 3.5 mEq/L for each 10 mm Hg rise in PaCO 2. The expected change in pH with respiratory acidosis can be estimated with the following equations: [citation needed] Acute respiratory acidosis: Change in pH = 0.08 X ((40 − PaCO 2)/10) Chronic respiratory acidosis: Change in pH = 0.03 X ((40 − PaCO 2)/10)

  3. Arterial blood gas test - Wikipedia

    en.wikipedia.org/wiki/Arterial_blood_gas_test

    The normal range for pH is 7.35–7.45. As the pH decreases (< 7.35), it implies acidosis, while if the pH increases (> 7.45) it implies alkalosis. In the context of arterial blood gases, the most common occurrence will be that of respiratory acidosis. Carbon dioxide is dissolved in the blood as carbonic acid, a weak acid; however, in large ...

  4. Hypercapnia - Wikipedia

    en.wikipedia.org/wiki/Hypercapnia

    Since carbon dioxide is in equilibrium with carbonic acid in the blood, hypercapnia drives serum pH down, resulting in respiratory acidosis. Clinically, the effect of hypercapnia on pH is estimated using the ratio of the arterial pressure of carbon dioxide to the concentration of bicarbonate ion, P a C O 2 / H C O 3 − {\displaystyle {P_{a_{CO ...

  5. Winters's formula - Wikipedia

    en.wikipedia.org/wiki/Winters's_formula

    Dr. R. W. Winters conducted an experiment in the 1960s on 60 patients with varying degrees of metabolic acidosis. He aimed to empirically determine a mathematical expression representing the effect of respiratory compensation during metabolic acidosis. He measured the blood pH, plasma PCO2, blood base excess, and plasma bicarbonate concentrations.

  6. Respiratory failure - Wikipedia

    en.wikipedia.org/wiki/Respiratory_failure

    Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases (hypoxemia, hypercapnia, or both), and evidence of increased work of breathing.

  7. pCO2 - Wikipedia

    en.wikipedia.org/wiki/PCO2

    It is a good indicator of respiratory function and the closely related factor of acid–base homeostasis, reflecting the amount of acid in the blood (without lactic acid). Normal values for humans are in the range 35–45 mmHg. Values less than this may indicate hyperventilation and (if blood pH is greater than 7.45) respiratory alkalosis.

  8. Blood gas test - Wikipedia

    en.wikipedia.org/wiki/Blood_gas_test

    A blood gas test or blood gas analysis tests blood to measure blood gas tension values and blood pH.It also measures the level and base excess of bicarbonate.The source of the blood is reflected in the name of each test; arterial blood gases come from arteries, venous blood gases come from veins and capillary blood gases come from capillaries. [1]

  9. Pulmonary gas pressures - Wikipedia

    en.wikipedia.org/wiki/Pulmonary_gas_pressures

    The partial pressure of carbon dioxide, along with the pH, can be used to differentiate between metabolic acidosis, metabolic alkalosis, respiratory acidosis, and respiratory alkalosis. Hypoventilation exists when the ratio of carbon dioxide production to alveolar ventilation increases above normal values – greater than 45mmHg.