Search results
Results From The WOW.Com Content Network
In electrochemistry, cell notation or cell representation is a shorthand method of expressing a reaction in an electrochemical cell.. In cell notation, the two half-cells are described by writing the formula of each individual chemical species involved in the redox reaction across the cell, with all other common ions and inert substances being ignored.
A galvanic cell consists of two half-cells, such that the electrode of one half-cell is composed of metal A, and the electrode of the other half-cell is composed of metal B; the redox reactions for the two separate half-cells are thus: A n + + n e − ⇌ A B m + + m e − ⇌ B. The overall balanced reaction is: m A + n B m + ⇌ n B + m A n +
Electrochemical cells that generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells. [2] Both galvanic and electrolytic cells can be thought of as having two half-cells: consisting of separate oxidation and reduction reactions.
An electrochemical cell is a device that produces an electric current from energy released by a spontaneous redox reaction. This kind of cell includes the Galvanic cell or Voltaic cell, named after Luigi Galvani and Alessandro Volta, both scientists who conducted experiments on chemical reactions and electric current during the late 18th century.
In electrochemistry, a half-cell is a structure that contains a conductive electrode and a surrounding conductive electrolyte separated by a naturally occurring Helmholtz double layer. Chemical reactions within this layer momentarily pump electric charges between the electrode and the electrolyte, resulting in a potential difference between the ...
Thermogalvanic cells are a kind of heat engine. Ultimately the driving force behind them is the transport of entropy from the high temperature source to the low temperature sink. [10] Therefore, these cells work thanks to a thermal gradient established between different parts of the cell.
The Weston cell or Weston standard cell is a wet-chemical cell that produces a highly stable voltage suitable as a laboratory standard for calibration of voltmeters. Invented by Edward Weston in 1893, it was adopted as the International Standard for EMF from 1911 until superseded by the Josephson voltage standard in 1990.
Voltammetry is the study of current as a function of applied potential. Voltammetric methods involve electrochemical cells, and investigate the reactions occurring at electrode/electrolyte interfaces. [4] The reactivity of analytes in these half-cells is used to determine their concentration.