Search results
Results From The WOW.Com Content Network
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
Normally, however, only a subset is available, and the variance calculated from this is called the sample variance. The variance calculated from a sample is considered an estimate of the full population variance. There are multiple ways to calculate an estimate of the population variance, as discussed in the section below.
Formal estimation model: The quantification step is based on mechanical processes, e.g., the use of a formula derived from historical data. Combination-based estimation: The quantification step is based on a judgmental and mechanical combination of estimates from different sources. Below are examples of estimation approaches within each category.
using a target variance for an estimate to be derived from the sample eventually obtained, i.e., if a high precision is required (narrow confidence interval) this translates to a low target variance of the estimator. the use of a power target, i.e. the power of statistical test to be applied once the sample is collected.
where R 2 is the coefficient of determination and VAR err and VAR tot are the variance of the residuals and the sample variance of the dependent variable. SS err (the sum of squared predictions errors, equivalently the residual sum of squares ), SS tot (the total sum of squares ), and SS reg (the sum of squares of the regression, equivalently ...
In statistics, pooled variance (also known as combined variance, composite variance, or overall variance, and written ) is a method for estimating variance of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same. The numerical estimate resulting from ...
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.
The sum of squared deviations needed to calculate sample variance (before deciding whether to divide by n or n − 1) is most easily calculated as = From the two derived expectations above the expected value of this sum is