When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poisson point process - Wikipedia

    en.wikipedia.org/wiki/Poisson_point_process

    A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...

  3. Nearest neighbour distribution - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_distribution

    For a Poisson point process, the J function is simply J(r) = 1, hence why it is used as a non-parametric test for whether data behaves as though it were from a Poisson process. It is, however, thought possible to construct non-Poisson point processes for which J ( r ) = 1, [ 10 ] but such counterexamples are viewed as somewhat 'artificial' by ...

  4. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    The renewal process is a generalization of the Poisson process. In essence, the Poisson process is a continuous-time Markov process on the positive integers (usually starting at zero) which has independent exponentially distributed holding times at each integer i {\displaystyle i} before advancing to the next integer, i + 1 {\displaystyle i+1} .

  5. Mixed Poisson process - Wikipedia

    en.wikipedia.org/wiki/Mixed_Poisson_process

    Mixed Poisson processes are doubly stochastic in the sense that in a first step, the value of the random variable is determined. This value then determines the "second order stochasticity" by increasing or decreasing the original intensity measure μ {\displaystyle \mu } .

  6. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process. [ 119 ] [ 121 ] The homogeneous Poisson process is a member of important classes of stochastic processes such as Markov processes and Lévy processes.

  7. Mapping theorem (point process) - Wikipedia

    en.wikipedia.org/.../Mapping_theorem_(point_process)

    It describes how a Poisson point process is altered under measurable transformations. This allows construction of more complex Poisson point processes out of homogeneous Poisson point processes and can, for example, be used to simulate these more complex Poisson point processes in a similar manner to inverse transform sampling.

  8. Negative binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_binomial_distribution

    The count is also, however, the count of the Success Poisson process at the random time T of the rth occurrence in the Failure Poisson process. The Success count follows a Poisson distribution with mean pT, where T is the waiting time for r occurrences in a Poisson process of intensity 1 − p, i.e., T is gamma-distributed with shape parameter ...

  9. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    An R package poibin was provided along with the paper, [13] which is available for the computing of the cdf, pmf, quantile function, and random number generation of the Poisson binomial distribution. For computing the PMF, a DFT algorithm or a recursive algorithm can be specified to compute the exact PMF, and approximation methods using the ...