Search results
Results From The WOW.Com Content Network
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
The harmonic series is the infinite series = = + + + + + in which the terms are all of the positive unit fractions. It is a divergent series : as more terms of the series are included in partial sums of the series, the values of these partial sums grow arbitrarily large, beyond any finite limit.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.
This was proved by Leonhard Euler in 1737, [1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).
The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10. Unlike the harmonic series, which does not exclude those numbers, this series converges, specifically to approximately 22.9207 . A palindromic number is one that remains the same when its digits are reversed.
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
In mathematics, a number of concepts employ the word harmonic. The similarity of this terminology to that of music is not accidental: the equations of motion of vibrating strings, drums and columns of air are given by formulas involving Laplacians ; the solutions to which are given by eigenvalues corresponding to their modes of vibration.