Search results
Results From The WOW.Com Content Network
Rayleigh–Lorentz pendulum (or Lorentz pendulum) is a simple pendulum, but subjected to a slowly varying frequency due to an external action (frequency is varied by varying the pendulum length), named after Lord Rayleigh and Hendrik Lorentz. [1] This problem formed the basis for the concept of adiabatic invariants in mechanics. On account of ...
A simple pendulum. As shown at right, a simple pendulum is a system composed of a weight and a string. The string is attached at the top end to a pivot and at the bottom end to a weight. Being inextensible, the string has a constant length.
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
A simple gravity pendulum [1] is an idealized mathematical model of a real pendulum. [2] [3] [4] It is a weight (or bob) on the end of a massless cord suspended from a pivot, without friction. Since in the model there is no frictional energy loss, when given an initial displacement it swings back and forth with a constant amplitude. The model ...
Johann Bernoulli solved the problem in a paper (Acta Eruditorum, 1697). Schematic of a cycloidal pendulum. The tautochrone problem was studied by Huygens more closely when it was realized that a pendulum, which follows a circular path, was not isochronous and thus his pendulum clock would keep different time depending on how far the pendulum ...
The method removes secular terms—terms growing without bound—arising in the straightforward application of perturbation theory to weakly nonlinear problems with finite oscillatory solutions. [1] [2] The method is named after Henri Poincaré, [3] and Anders Lindstedt. [4]
Spherical pendulum: angles and velocities. In physics, a spherical pendulum is a higher dimensional analogue of the pendulum. It consists of a mass m moving without friction on the surface of a sphere. The only forces acting on the mass are the reaction from the sphere and gravity.
The inverted pendulum has been employed in various devices and trying to balance an inverted pendulum presents a unique engineering problem for researchers. [7] The inverted pendulum was a central component in the design of several early seismometers due to its inherent instability resulting in a measurable response to any disturbance. [8]