When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    The symmetric group on a finite set is the group whose elements are all bijective functions from to and whose group operation is that of function composition. [1] For finite sets, "permutations" and "bijective functions" refer to the same operation, namely rearrangement. The symmetric group of degree is the symmetric group on the set .

  3. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose (i.e., it is invariant under matrix transposition). Formally, matrix A is symmetric if. By the definition of matrix equality, which requires that the entries in all corresponding positions be equal, equal matrices must have the same dimensions (as matrices ...

  4. Covering groups of the alternating and symmetric groups

    en.wikipedia.org/wiki/Covering_groups_of_the...

    The symmetric group of degree n ≥ 4 has Schur covers of order 2⋅n! There are two isomorphism classes if n ≠ 6 and one isomorphism class if n = 6. The alternating group of degree n has one isomorphism class of Schur cover, which has order n! except when n is 6 or 7, in which case the Schur cover has order 3⋅n!.

  5. Inner automorphism - Wikipedia

    en.wikipedia.org/wiki/Inner_automorphism

    When n = 6, the symmetric group has a unique non-trivial class of non-inner automorphisms, and when n = 2, the symmetric group, despite having no non-inner automorphisms, is abelian, giving a non-trivial center, disqualifying it from being complete. If the inner automorphism group of a perfect group G is simple, then G is called quasisimple.

  6. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    Every symmetric group has a one-dimensional representation called the trivial representation, where every element acts as the one by one identity matrix. For n ≥ 2 , there is another irreducible representation of degree 1, called the sign representation or alternating character , which takes a permutation to the one by one matrix with entry ...

  7. Automorphisms of the symmetric and alternating groups

    en.wikipedia.org/wiki/Automorphisms_of_the...

    For every symmetric group other than S 6, there is no other conjugacy class consisting of elements of order 2 that has the same number of elements as the class of transpositions. Or as follows: Each permutation of order two (called an involution) is a product of k > 0 disjoint transpositions, so that it has cyclic structure 2 k 1 n−2k.

  8. Frobenius formula - Wikipedia

    en.wikipedia.org/wiki/Frobenius_formula

    Frobenius formula. In mathematics, specifically in representation theory, the Frobenius formula, introduced by G. Frobenius, computes the characters of irreducible representations of the symmetric group Sn. Among the other applications, the formula can be used to derive the hook length formula.

  9. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    In group theory, the quaternion group Q 8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation. where e is the identity element and e commutes with the other elements of the group.