When.com Web Search

  1. Ads

    related to: graphing rational functions with holes kuta 1

Search results

  1. Results From The WOW.Com Content Network
  2. Runge's theorem - Wikipedia

    en.wikipedia.org/wiki/Runge's_theorem

    Given a holomorphic function f on the blue compact set and a point in each of the holes, one can approximate f as well as desired by rational functions having poles only at those three points. In complex analysis , Runge's theorem (also known as Runge's approximation theorem ) is named after the German mathematician Carl Runge who first proved ...

  3. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.

  4. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    For a torus, the first Betti number is b 1 = 2 , which can be intuitively thought of as the number of circular "holes" Informally, the kth Betti number refers to the number of k-dimensional holes on a topological surface. A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object.

  5. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    Rational functions can be either finite or infinite for finite values, or finite or infinite for infinite x values. Thus, rational functions can easily be incorporated into a rational function model. Rational function models can often be used to model complicated structure with a fairly low degree in both the numerator and denominator.

  6. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.

  7. Function field (scheme theory) - Wikipedia

    en.wikipedia.org/wiki/Function_field_(scheme_theory)

    The sheaf of rational functions K X of a scheme X is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of algebraic varieties , such a sheaf associates to each open set U the ring of all rational functions on that open set; in other words, K X ( U ) is the ...

  8. Riemann sphere - Wikipedia

    en.wikipedia.org/wiki/Riemann_sphere

    For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the poles of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere.

  9. Pole–zero plot - Wikipedia

    en.wikipedia.org/wiki/Pole–zero_plot

    A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.