When.com Web Search

  1. Ad

    related to: solving polynomial equations practice quizlet with answers key

Search results

  1. Results From The WOW.Com Content Network
  2. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Completing the cube is a similar technique that allows to transform a cubic polynomial into a cubic polynomial without term of degree two. More precisely, if + + + is a polynomial in x such that , its two first terms are the two first terms of the expanded form of

  3. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.

  4. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.

  5. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    If the discriminant of such a polynomial is negative, then both roots of the quadratic equation have imaginary parts. In particular, if b and c are real numbers and b 2 − 4 c < 0, all the convergents of this continued fraction "solution" will be real numbers, and they cannot possibly converge to a root of the form u + iv (where v ≠ 0 ...

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The most efficient algorithms allow solving easily (on a computer) polynomial equations of degree higher than 1,000 (see Root-finding algorithm). For polynomials with more than one indeterminate, the combinations of values for the variables for which the polynomial function takes the value zero are generally called zeros instead of "roots".

  7. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  8. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This method works well for cubic and quartic equations, but Lagrange did not succeed in applying it to a quintic equation, because it requires solving a resolvent polynomial of degree at least six. [ 37 ] [ 38 ] [ 39 ] Apart from the fact that nobody had previously succeeded, this was the first indication of the non-existence of an algebraic ...

  9. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    The methods for solving equations generally depend on the type of equation, both the kind of expressions in the equation and the kind of values that may be assumed by the unknowns. The variety in types of equations is large, and so are the corresponding methods. Only a few specific types are mentioned below.