When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...

  3. The Master Algorithm - Wikipedia

    en.wikipedia.org/wiki/The_Master_Algorithm

    The book outlines five approaches of machine learning: inductive reasoning, connectionism, evolutionary computation, Bayes' theorem and analogical modelling.The author explains these tribes to the reader by referring to more understandable processes of logic, connections made in the brain, natural selection, probability and similarity judgments.

  4. Andrew Ng - Wikipedia

    en.wikipedia.org/wiki/Andrew_Ng

    Ng researches primarily in machine learning, deep learning, machine perception, computer vision, and natural language processing; and is one of the world's most famous and influential computer scientists. [34] He's frequently won best paper awards at academic conferences and has had a huge impact on the field of AI, computer vision, and robotics.

  5. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  6. Ian Goodfellow - Wikipedia

    en.wikipedia.org/wiki/Ian_Goodfellow

    Ian J. Goodfellow (born 1987 [1]) is an American computer scientist, engineer, and executive, most noted for his work on artificial neural networks and deep learning.He is a research scientist at Google DeepMind, [2] was previously employed as a research scientist at Google Brain and director of machine learning at Apple, and has made several important contributions to the field of deep ...

  7. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  8. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible.

  9. BookCorpus - Wikipedia

    en.wikipedia.org/wiki/BookCorpus

    The dataset consists of around 985 million words, and the books that comprise it span a range of genres, including romance, science fiction, and fantasy. [ 3 ] The corpus was introduced in a 2015 paper by researchers from the University of Toronto and MIT titled "Aligning Books and Movies: Towards Story-like Visual Explanations by Watching ...