When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    If a ≡ b (mod m), then it is generally false that k a ≡ k b (mod m). However, the following is true: If c ≡ d (mod φ(m)), where φ is Euler's totient function, then a c ≡ a d (mod m) —provided that a is coprime with m. For cancellation of common terms, we have the following rules: If a + k ≡ b + k (mod m), where k is any integer ...

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  5. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  6. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n.

  7. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Values of the Ramanujan tau function, ... Composite numbers n such that a n − 1 ≡ 1 (mod n) if a is coprime with n. A002997: Woodall numbers: 1, 7, 23, 63, 159 ...

  8. Bernstein–Vazirani algorithm - Wikipedia

    en.wikipedia.org/wiki/Bernstein–Vazirani_algorithm

    The Bernstein–Vazirani algorithm, which solves the Bernstein–Vazirani problem, is a quantum algorithm invented by Ethan Bernstein and Umesh Vazirani in 1997. [1] It is a restricted version of the Deutsch–Jozsa algorithm where instead of distinguishing between two different classes of functions, it tries to learn a string encoded in a function. [2]

  9. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    output: Integer S in the range [0, N − 1] such that S ≡ TR −1 mod N m ← ((T mod R)N′) mod R t ← (T + mN) / R if t ≥ N then return t − N else return t end if end function To see that this algorithm is correct, first observe that m is chosen precisely so that T + mN is divisible by R .