Search results
Results From The WOW.Com Content Network
The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute. For a right triangle, the orthocenter coincides with the vertex at the right angle. [2]
This definition ensures that triangle centers of similar triangles meet the invariance criteria specified above. By convention only the first of the three trilinear coordinates of a triangle center is quoted since the other two are obtained by cyclic permutation of a, b, c. This process is known as cyclicity. [4] [5]
The process of drawing the altitude from a vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection. Altitudes can be used in the computation of the area of a triangle: one-half of the product of an altitude's length and its base's length (symbol b) equals the triangle's area: A = h b /2 ...
The trunk of the body contains, from superior to inferior, the thoracic region encompassing the chest [1] the mammary region encompassing each breast; the sternal region encompassing the sternum; the abdominal region encompassing the stomach area; the umbilical region is located around the navel; the coxal region encompassing the lateral (side ...
A nine-point circle bisects a line segment going from the corresponding triangle's orthocenter to any point on its circumcircle. Figure 4. The center N of the nine-point circle bisects a segment from the orthocenter H to the circumcenter O (making the orthocenter a center of dilation to both circles): [6]: p.152
This position provides a definition of what is at the front ("anterior"), behind ("posterior") and so on. As part of defining and describing terms, the body is described through the use of anatomical planes and anatomical axes. The meaning of terms that are used can change depending on whether an organism is bipedal or quadrupedal.
The first parts of the radius formula reflect the fact that the orthocenter divides the altitudes into segment pairs of equal products. The trigonometric formula for the radius shows that the polar circle has a real existence only if the triangle is obtuse , so one of its angles is obtuse and hence has a negative cosine .
A triangle showing its circumcircle and circumcenter (black), altitudes and orthocenter (red), and nine-point circle and nine-point center (blue) In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle.