Search results
Results From The WOW.Com Content Network
A parallel plate capacitor. Using an imaginary box, it is possible to use Gauss's law to explain the relationship between electric displacement and free charge. Consider an infinite parallel plate capacitor where the space between the plates is empty or contains a neutral, insulating medium. In both cases, the free charges are only on the metal ...
The most usual and simple example is a fully reflecting (electric wall) boundary - the outer medium is considered as a perfect conductor. In some cases, it is more complicated: for example, the reflection-less (i.e. open) boundaries are simulated as perfectly matched layer or magnetic wall that do not resume to a single interface.
The electric charge that arises in the simplest textbook situations would be classified as "free charge"—for example, the charge which is transferred in static electricity, or the charge on a capacitor plate. In contrast, "bound charge" arises only in the context of dielectric (polarizable) materials. (All materials are polarizable to some ...
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m −3), at any point in a volume.
In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual
The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).
where ρ is the charge density, which can (and often does) depend on time and position, ε 0 is the electric constant, μ 0 is the magnetic constant, and J is the current per unit area, also a function of time and position. The equations take this form with the International System of Quantities.
an infinite plane of uniform charge; an infinitely long cylinder of uniform charge; As example "field near infinite line charge" is given below; Consider a point P at a distance r from an infinite line charge having charge density (charge per unit length) λ. Imagine a closed surface in the form of cylinder whose axis of rotation is the line ...