When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    An electric field (sometimes called E-field [1]) is the physical field that surrounds electrically charged particles.Charged particles exert attractive forces on each other when their charges are opposite, and repulse each other when their charges are the same.

  3. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force , q ( v × B ) .

  4. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).

  5. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential.

  6. Hall effect - Wikipedia

    en.wikipedia.org/wiki/Hall_effect

    The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field. It is a characteristic of the material from which the conductor is made, since its value depends on the type, number, and properties of the charge carriers that constitute the current.

  7. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero. In electrodynamics, when time-varying fields are present, the electric field cannot be expressed only ...

  8. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    In electromagnetism, electric flux is the total electric field that crosses a given surface. [1] The electric flux through a closed surface is equal to the total charge contained within that surface. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the electric potential.

  9. Electric displacement field - Wikipedia

    en.wikipedia.org/wiki/Electric_displacement_field

    In physics, the electric displacement field (denoted by D), also called electric flux density or electric induction, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field , combining the two in an auxiliary field .