Ads
related to: q-series math examples with answerssmartholidayshopping.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. [1] q-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit q → 1 is often formal, as q is often discrete-valued (for example, it may represent a ...
In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x n is called hypergeometric if the ratio of successive terms x n+1 /x n is a rational function of n.
q-Bessel polynomials; q-Charlier polynomials; q-Hahn polynomials; q-Jacobi polynomials: Big q-Jacobi polynomials; Continuous q-Jacobi polynomials; Little q-Jacobi polynomials; q-Krawtchouk polynomials; q-Laguerre polynomials; q-Meixner polynomials; q-Meixner–Pollaczek polynomials; q-Racah polynomials
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
In mathematics, in the field of combinatorics, the q-Vandermonde identity is a q-analogue of the Chu–Vandermonde identity. Using standard notation for q -binomial coefficients , the identity states that
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The q-Pochhammer symbol is a major building block in the construction of q-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series.