When.com Web Search

  1. Ad

    related to: what does e mc2 mean speed of light waves

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [ 1 ] [ 2 ] [ 3 ] and that the particles are free.

  4. Compton wavelength - Wikipedia

    en.wikipedia.org/wiki/Compton_wavelength

    The standard Compton wavelength λ of a particle of mass is given by =, where h is the Planck constant and c is the speed of light. The corresponding frequency f is given by f = m c 2 h , {\displaystyle f={\frac {mc^{2}}{h}},} and the angular frequency ω is given by ω = m c 2 ℏ . {\displaystyle \omega ={\frac {mc^{2}}{\hbar }}.}

  5. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  6. Annus mirabilis papers - Wikipedia

    en.wikipedia.org/wiki/Annus_Mirabilis_papers

    The equation sets forth that the energy of a body at rest (E) equals its mass (m) times the speed of light (c) squared, or E = mc 2. If a body gives off the energy L in the form of radiation, its mass diminishes by L/c 2. The fact that the energy withdrawn from the body becomes energy of radiation evidently makes no difference, so that we are ...

  7. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  8. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons. Each has an energy related to the frequency of the wave given by Planck's relation E = hf, where E is the energy of the photon, h is the Planck constant, 6.626 × 10 −34 J·s, and f is the frequency of ...

  9. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    These equations say respectively: a photon has zero rest mass; the photon energy is hν = hc|k| (k is the wave vector, c is speed of light); its electromagnetic momentum is ħk [ħ = h/(2π)]; the polarization μ = ±1 is the eigenvalue of the z-component of the photon spin.