Ad
related to: how to find odds ratio in spss statistics
Search results
Results From The WOW.Com Content Network
An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B occurring in the presence of A, and the odds of B in the absence of A.
Diagnostic odds ratios less than one indicate that the test can be improved by simply inverting the outcome of the test – the test is in the wrong direction, while a diagnostic odds ratio of exactly one means that the test is equally likely to predict a positive outcome whatever the true condition – the test gives no information.
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...
To compare effect sizes of the interactions between the variables, odds ratios are used. Odds ratios are preferred over chi-square statistics for two main reasons: [1] 1. Odds ratios are independent of the sample size; 2. Odds ratios are not affected by unequal marginal distributions.
The population estimate α can be extended to reflect a common odds ratio across all ability intervals k for a specific item. The common odds ratio estimator is denoted α MH and can be computed by the following equation: α MH = Σ(A k D k / N k) ⁄ Σ(B k C k / N k) for all values of k and where N k represents the total sample size at the ...
Post-test odds given by multiplying pretest odds with the ratio: Theoretically limitless: Pre-test state (and thus the pre-test probability) does not have to be same as in reference group: By relative risk: Quotient of risk among exposed and risk among unexposed: Pre-test probability multiplied by the relative risk
In fact, it can be shown that the unconditional analysis of matched pair data results in an estimate of the odds ratio which is the square of the correct, conditional one. [ 2 ] In addition to tests based on logistic regression, several other tests existed before conditional logistic regression for matched data as shown in related tests .