When.com Web Search

  1. Ad

    related to: difference of two means calculator with solution math equation problems

Search results

  1. Results From The WOW.Com Content Network
  2. Behrens–Fisher problem - Wikipedia

    en.wikipedia.org/wiki/Behrens–Fisher_problem

    In statistics, the Behrens–Fisher problem, named after Walter-Ulrich Behrens and Ronald Fisher, is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.

  3. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  4. Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Galerkin_method

    First, we will show that the Galerkin equation is a well-posed problem in the sense of Hadamard and therefore admits a unique solution. In the second step, we study the quality of approximation of the Galerkin solution . The analysis will mostly rest on two properties of the bilinear form, namely

  5. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  8. Boundary value problem - Wikipedia

    en.wikipedia.org/wiki/Boundary_value_problem

    Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).

  9. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    Its main advantage versus a purely multigrid solver is particularly clear for nonlinear problems, e.g., eigenvalue problems. If the matrix of the original equation or an eigenvalue problem is symmetric positive definite (SPD), the preconditioner is commonly constructed to be SPD as well, so that the standard conjugate gradient (CG) iterative ...