When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    For more factorization algorithms see e.g. Knuth's book The Art of Computer Programming volume 2. Algorithm Cantor–Zassenhaus algorithm. Input: A finite field F q of odd order q. A monic square free polynomial f in F q [x] of degree n = rd, which has r ≥ 2 irreducible factors each of degree d Output: The set of monic irreducible factors of f.

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  5. Continued fraction factorization - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    The continued fraction method is based on Dixon's factorization method. It uses convergents in the regular continued fraction expansion of , +. Since this is a quadratic irrational, the continued fraction must be periodic (unless n is square, in which case the factorization is obvious).

  6. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Instead, sparse matrix solving algorithms such as Block Lanczos or Block Wiedemann are used. Since m is a root of both f and g mod n , there are homomorphisms from the rings Z [ r 1 ] and Z [ r 2 ] to the ring Z / n Z (the integers modulo n ), which map r 1 and r 2 to m , and these homomorphisms will map each "square root" (typically not ...

  7. Special number field sieve - Wikipedia

    en.wikipedia.org/wiki/Special_number_field_sieve

    The SNFS works as follows. Let n be the integer we want to factor. As in the rational sieve, the SNFS can be broken into two steps: First, find a large number of multiplicative relations among a factor base of elements of Z/nZ, such that the number of multiplicative relations is larger than the number of elements in the factor base.

  8. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: square, hermitian, positive definite matrix Decomposition: =, where is upper triangular with real positive diagonal entries Comment: if the matrix is Hermitian and positive semi-definite, then it has a decomposition of the form = if the diagonal entries of are allowed to be zero