When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Disjoint union (topology) - Wikipedia

    en.wikipedia.org/wiki/Disjoint_union_(topology)

    The disjoint union space X, together with the canonical injections, can be characterized by the following universal property: If Y is a topological space, and f i : X i → Y is a continuous map for each i ∈ I, then there exists precisely one continuous map f : XY such that the following set of diagrams commute:

  3. Disjoint union - Wikipedia

    en.wikipedia.org/wiki/Disjoint_union

    In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.

  4. Disjoint union of graphs - Wikipedia

    en.wikipedia.org/wiki/Disjoint_union_of_graphs

    In graph theory, a branch of mathematics, the disjoint union of graphs is an operation that combines two or more graphs to form a larger graph. It is analogous to the disjoint union of sets , and is constructed by making the vertex set of the result be the disjoint union of the vertex sets of the given graphs, and by making the edge set of the ...

  5. Extension topology - Wikipedia

    en.wikipedia.org/wiki/Extension_topology

    Let X be a topological space and P a set disjoint from X. Consider in X ∪ P the topology whose closed sets are of the form X ∪ Q, where Q is a subset of P, or B, where B is a closed set of X. For this reason this topology is called the closed extension topology of X plus P, with which one extends to X ∪ P the closed sets of X.

  6. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    The coproduct in the category of sets is simply the disjoint union with the maps i j being the inclusion maps.Unlike direct products, coproducts in other categories are not all obviously based on the notion for sets, because unions don't behave well with respect to preserving operations (e.g. the union of two groups need not be a group), and so coproducts in different categories can be ...

  7. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    The union is the join/supremum of and with respect to because: L ⊆ L ∪ R {\displaystyle L\subseteq L\cup R} and R ⊆ L ∪ R , {\displaystyle R\subseteq L\cup R,} and if Z {\displaystyle Z} is a set such that L ⊆ Z {\displaystyle L\subseteq Z} and R ⊆ Z {\displaystyle R\subseteq Z} then L ∪ R ⊆ Z . {\displaystyle L\cup R\subseteq Z.}

  8. Pushout (category theory) - Wikipedia

    en.wikipedia.org/wiki/Pushout_(category_theory)

    The pushout of f and g is the disjoint union of X and Y, where elements sharing a common preimage (in Z) are identified, together with the morphisms i 1, i 2 from X and Y, i.e. = / where ~ is the finest equivalence relation (cf. also this) such that f(z) ~ g(z) for all z in Z.

  9. Disjoint-set data structure - Wikipedia

    en.wikipedia.org/wiki/Disjoint-set_data_structure

    The operation Union(x, y) replaces the set containing x and the set containing y with their union. Union first uses Find to determine the roots of the trees containing x and y. If the roots are the same, there is nothing more to do. Otherwise, the two trees must be merged.