Ad
related to: families of lines analytic geometry calculator formula book
Search results
Results From The WOW.Com Content Network
For example, suppose L, L′ are distinct lines in determined by points x, y and x′, y′, respectively. Linear combinations of their determining points give linear combinations of their Plücker coordinates, generating a one-parameter family of lines containing L and L′. This corresponds to a one-dimensional linear subspace ...
In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry . Analytic geometry is used in physics and engineering , and also in aviation , rocketry , space science , and spaceflight .
A general straight-line thread connects the two points (0, k−t) and (t, 0), where k is an arbitrary scaling constant, and the family of lines is generated by varying the parameter t. From simple geometry, the equation of this straight line is y = −(k − t)x/t + k − t. Rearranging and casting in the form F(x,y,t) = 0 gives:
Green line has two intersections. Yellow line lies tangent to the cylinder, so has infinitely many points of intersection. Line-cylinder intersection is the calculation of any points of intersection, given an analytic geometry description of a line and a cylinder in 3d space. An arbitrary line and cylinder may have no intersection at all.
The three possible line-sphere intersections: 1. No intersection. 2. Point intersection. 3. Two point intersection. In analytic geometry, a line and a sphere can intersect in three ways:
The corresponding concept to hyperbolic line arrangements for pseudolines is a weak pseudoline arrangement, [52] a family of curves having the same topological properties as lines [53] such that any two curves in the family either meet in a single crossing point or have no intersection.
In geometry, a family of curves is a set of curves, each of which is given by a function or parametrization in which one or more of the parameters is variable. In general, the parameter(s) influence the shape of the curve in a way that is more complicated than a simple linear transformation .
The generators of any ruled surface coalesce with one family of its asymptotic lines. For developable surfaces they also form one family of its lines of curvature. It can be shown that any developable surface is a cone, a cylinder, or a surface formed by all tangents of a space curve. [5] Developable connection of two ellipses and its development