Search results
Results From The WOW.Com Content Network
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; [1] a three-dimensional solid bounded exclusively by faces is a polyhedron. A face can be finite like a polygon or circle, or infinite like a half-plane or plane.
For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative square. The dual concept of the pullback is the pushout .
The notion of pullback as a fiber-product ultimately leads to the very general idea of a categorical pullback, but it has important special cases: inverse image (and pullback) sheaves in algebraic geometry, and pullback bundles in algebraic topology and differential geometry. See also: Pullback (category theory) Fibred category; Inverse image sheaf
This article begins with the simplest operations, then uses them to construct more sophisticated ones. Roughly speaking, the pullback mechanism (using precomposition) turns several constructions in differential geometry into contravariant functors.
In mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties.
In geometry, a tessellation of dimension 2 (a plane tiling) or higher, or a polytope of dimension 3 (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive , i.e. must lie within the same symmetry orbit .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A face of a convex polytope P may be defined as the intersection of P and a closed halfspace H such that the boundary of H contains no interior point of P. The dimension of a face is the dimension of this hull. The 0-dimensional faces are the vertices themselves, and the 1-dimensional faces (called edges) are line segments connecting pairs of ...