Search results
Results From The WOW.Com Content Network
Product One-way Two-way MANOVA GLM Mixed model Post-hoc Latin squares; ADaMSoft: Yes Yes No No No No No Alteryx: Yes Yes Yes Yes Yes Analyse-it: Yes Yes No
Stata's proprietary output language is known as SMCL, which stands for Stata Markup and Control Language and is pronounced "smickle". [10] Stata's data format is always tabular in format. Stata refers to the columns of tabular data as variables.
The Unscrambler – free-to-try commercial multivariate analysis software for Windows; Unistat – general statistics package that can also work as Excel add-in; WarpPLS – statistics package used in structural equation modeling; Wolfram Language [6] – the computer language that evolved from the program Mathematica. It has similar ...
In Stata, this test is performed by the command estat bgodfrey. [7] [8] In SAS, the GODFREY option of the MODEL statement in PROC AUTOREG provides a version of this test. In Python Statsmodels, the acorr_breusch_godfrey function in the module statsmodels.stats.diagnostic [9]
A PDF creator and virtual PDF printer for Microsoft Windows PDF-XChange: Proprietary: Yes: PDF Tools allows creation of PDFs from many types of source input (images, scans, etc.). The PDF-XChange print driver allows printing directly to a PDF. A "lite" version of the print driver is free for non-commercial (home and academic) use. PrimoPDF ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.