Ad
related to: problem solving by george polya
Search results
Results From The WOW.Com Content Network
How to Solve It (1945) is a small volume by mathematician George Pólya, describing methods of problem solving. [ 1 ] This book has remained in print continually since 1945.
Problems and Theorems in Analysis (German: Aufgaben und Lehrsätze aus der Analysis) is a two-volume problem book in analysis by George Pólya and Gábor Szegő. Published in 1925, the two volumes are titled (I) Series. Integral Calculus. Theory of Functions.; and (II) Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry.
George Pólya (/ ˈ p oʊ l j ə /; Hungarian: Pólya György, pronounced [ˈpoːjɒ ˈɟørɟ]; December 13, 1887 – September 7, 1985) was a Hungarian-American mathematician.He was a professor of mathematics from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University.
Polya begins Volume I with a discussion on induction, not mathematical induction, but as a way of guessing new results.He shows how the chance observations of a few results of the form 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, etc., may prompt a sharp mind to formulate the conjecture that every even number greater than 4 can be represented as the sum of two odd prime numbers.
Instead of solving a specific type of problem, which would seem intuitively easier, it can be easier to solve a more general problem, which covers the specifics of the sought-after solution. The inventor's paradox has been used to describe phenomena in mathematics , programming , and logic , as well as other areas that involve critical thinking .
Problem Solving Through Recreational Mathematics is based on mathematics courses taught by the authors, who were both mathematics professors at Temple University. [1] [2] It follows a principle in mathematics education popularized by George Pólya, of focusing on techniques for mathematical problem solving, motivated by the idea that by doing mathematics rather than being told about its ...
All horses are the same color is a falsidical paradox that arises from a flawed use of mathematical induction to prove the statement All horses are the same color. [1] There is no actual contradiction, as these arguments have a crucial flaw that makes them incorrect.
On problem solving. [4] He made an empirical study of how far mathematics undergraduates tackling non-routine problems can use the strategies set out in George Pólya's work How to Solve It The strategies were based on Pólya's reflections on how he solved problems. Schoenfeld's study found that the strategies alone are weak, and need to be ...