Search results
Results From The WOW.Com Content Network
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
The cyclic light-dependent reactions occur only when the sole photosystem being used is photosystem I. Photosystem I excites electrons which then cycle from the transport protein, ferredoxin (Fd), to the cytochrome complex, b 6 f, to another transport protein, plastocyanin (Pc), and back to photosystem I. A proton gradient is created across the ...
The fact that a reaction is thermodynamically possible does not mean that it will actually occur. A mixture of hydrogen gas and oxygen gas does not spontaneously ignite. It is necessary either to supply an activation energy or to lower the intrinsic activation energy of the system, in order to make most biochemical reactions proceed at a useful ...
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
C 3 photosynthesis is the oldest and most common form. A C3 plant uses the Calvin cycle for the initial steps that incorporate CO 2 into organic material. A C4 plant prefaces the Calvin cycle with reactions that incorporate CO 2 into four-carbon compounds. A CAM plant uses crassulacean acid metabolism, an adaptation for photosynthesis in arid ...
The resulting pyruvate (PYR), together with about half of the phosphoglycerate (PGA) produced by RuBisCO, diffuses back to the mesophyll. PGA is then chemically reduced and diffuses back to the bundle sheath to complete the reductive pentose phosphate cycle (RPP). This exchange of metabolites is essential for C 4 photosynthesis to work.
Noncyclic photophosphorylation through light-dependent reactions of photosynthesis at the thylakoid membrane. Photosynthesis is the process in which light energy is absorbed and converted to chemical energy. This chemical energy is eventually used in the conversion of carbon dioxide to sugar in plants.
The thylakoid lumen is a continuous aqueous phase enclosed by the thylakoid membrane. It plays an important role for photophosphorylation during photosynthesis. During the light-dependent reaction, protons are pumped across the thylakoid membrane into the lumen making it acidic down to pH 4.