Search results
Results From The WOW.Com Content Network
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Modulo 2 there is only one coprime congruence class, [1], so (/) is the trivial group. Modulo 4 there are two coprime congruence classes, [1] and [3], so ( Z / 4 Z ) × ≅ C 2 , {\displaystyle (\mathbb {Z} /4\mathbb {Z} )^{\times }\cong \mathrm {C} _{2},} the cyclic group with two elements.
Every number in a reduced residue system modulo n is a generator for the additive group of integers modulo n. A reduced residue system modulo n is a group under multiplication modulo n. If {r 1, r 2, ... , r φ(n)} is a reduced residue system modulo n with n > 2, then .
The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...
In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, [1] or extended ideal [2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1] χ ( a b ) = χ ( a ) χ ( b ) ; {\displaystyle \chi (ab)=\chi (a)\chi (b);} that is, χ {\displaystyle \chi } is completely multiplicative .