Search results
Results From The WOW.Com Content Network
Bromine monofluoride is a quite unstable interhalogen compound with the chemical formula BrF. It can be produced through the reaction of bromine trifluoride (or bromine pentafluoride) and bromine. Due to its lability, the compound can be detected but not isolated: [2] BrF 3 + Br 2 → 3 BrF BrF 5 + 2 Br 2 → 5 BrF Br 2(l) + F 2(g) → 2 BrF (g)
Carbon monofluoride (CF, CF x, or (CF) x), also called polycarbon monofluoride; Chlorine monofluoride, a volatile interhalogen compound with formula ClF; Iodine monofluoride, a chocolate-brown solid compound with formula IF; Hydrogen fluoride, a liquid or gas with boiling point at about 20 °C, HF; Nitrogen monofluoride, a metastable compound ...
Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X 2 /X − couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V ...
The gram-atom is a former term for a mole of atoms, and gram-molecule for a mole of molecules. [7] Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8]
Chlorine monofluoride (ClF) is the lightest interhalogen compound. ClF is a colorless gas with a normal boiling point of −100 °C. Bromine monofluoride (BrF) has not been obtained as a pure compound — it dissociates into the trifluoride and free bromine. It is created according to the following equation: Br 2 (l) + F 2 (g) → 2 BrF(g)
Nominal mass is a term used in high level mass spectrometric discussions, it can be calculated using the mass number of the most abundant isotope of each atom, without regard for the mass defect. For example, when calculating the nominal mass of a molecule of nitrogen (N 2) and ethylene (C 2 H 4) it comes out as. N 2 (2*14)= 28 Da C 2 H 4
Carbon–fluorine bonds can have a bond dissociation energy (BDE) of up to 130 kcal/mol. [2] The BDE (strength of the bond) of C–F is higher than other carbon–halogen and carbon–hydrogen bonds. For example, the BDEs of the C–X bond within a CH 3 –X molecule is 115, 104.9, 83.7, 72.1, and 57.6 kcal/mol for X = fluorine, hydrogen ...
The F 2 molecule is commonly described as having exactly one bond (in other words, a bond order of 1) provided by one p electron per atom, as are other halogen X 2 molecules. However, the heavier halogens' p electron orbitals partly mix with those of d orbitals, which results in an increased effective bond order; for example, chlorine has a ...