Search results
Results From The WOW.Com Content Network
In mathematical optimization, linear-fractional programming (LFP) is a generalization of linear programming (LP). Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear ...
An example of such linear fractional transformation is the Cayley transform, which was originally defined on the 3 × 3 real matrix ring. Linear fractional transformations are widely used in various areas of mathematics and its applications to engineering, such as classical geometry , number theory (they are used, for example, in Wiles's proof ...
In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of efficiency of a system.
The automorphisms of a real projective line are called projective transformations, homographies, or linear fractional transformations. They form the projective linear group PGL(2, R ). Each element of PGL(2, R ) can be defined by a nonsingular 2×2 real matrix, and two matrices define the same element of PGL(2, R ) if one is the product of the ...
In applied statistics, fractional models are, to some extent, related to binary response models. However, instead of estimating the probability of being in one bin of a dichotomous variable , the fractional model typically deals with variables that take on all possible values in the unit interval .
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
which are called homographic functions or linear fractional transformations. In the case of the complex projective line, which can be identified with the Riemann sphere, the homographies are called Möbius transformations. These correspond precisely with those bijections of the Riemann sphere that preserve orientation and are conformal. [3]
Range fraction is similar to the labeled line theory in that they both describe a phenomenon by which sensory neurons divide the task of encoding a range of stimulus intensities. However the difference lies within the downstream synaptic partners. Labeled line theory describes fully segregated channels postsynaptically. In contrast, sensory ...