Search results
Results From The WOW.Com Content Network
To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.
The normal form can be derived from the standard form + = by dividing all of the coefficients by +. and also multiplying through by if < Unlike the slope-intercept and intercept forms, this form can represent any line but also requires only two finite parameters, φ {\displaystyle \varphi } and p , to be specified.
A vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. This vertex figure has a 3-dimensional structure since the faces are not in the same plane for polyhedra, but for vertex-uniform polyhedra all the neighboring vertices are in the same plane and so this plane projection can be used to visually represent the vertex configuration.
In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
[6]: 207 Starting with a quadratic equation in standard form, ax 2 + bx + c = 0. Divide each side by a, the coefficient of the squared term. Subtract the constant term c/a from both sides. Add the square of one-half of b/a, the coefficient of x, to both sides. This "completes the square", converting the left side into a perfect square.
The -intercept of () is indicated by the red dot at (=, =). In analytic geometry , using the common convention that the horizontal axis represents a variable x {\displaystyle x} and the vertical axis represents a variable y {\displaystyle y} , a y {\displaystyle y} -intercept or vertical intercept is a point where the graph of a function or ...
Vertex (geometry), a point where two or more curves, lines, or edges meet; Vertex (computer graphics), a data structure that describes the position of a point; Vertex (curve), a point of a plane curve where the first derivative of curvature is zero; Vertex (graph theory), the fundamental unit of which graphs are formed
If a line l goes from vertex v to vertex v′, then M(l) goes from N(v) to N(v′). If the line is undirected, as it is for a real scalar field, then M(l) can go from N(v′) to N(v) too. If a line l ends on an external line, M(l) ends on the same external line. If there are different types of lines, M(l) should preserve the type.