When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    This can also be seen from the geometric picture: the trapezoids include all of the area under the curve and extend over it. Similarly, a concave-down function yields an underestimate because area is unaccounted for under the curve, but none is counted above. If the interval of the integral being approximated includes an inflection point, the ...

  3. Cavalieri's quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_quadrature_formula

    The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = x n. Traditionally important cases are y = x 2 , the quadrature of the parabola , known in antiquity, and y = 1/ x , the quadrature of the hyperbola , whose value is a logarithm .

  4. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...

  5. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    To estimate the area under a curve the trapezoid rule is applied first to one-piece, then two, then four, and so on. One-piece. Note since it starts and ends at zero, this approximation yields zero area. Two-piece Four-piece Eight-piece. After trapezoid rule estimates are obtained, Richardson extrapolation is applied.

  6. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  7. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    Taking an example, the area under the curve y = x 2 over [0, 2] can be procedurally computed using Riemann's method. The interval [0, 2] is firstly divided into n subintervals, each of which is given a width of 2 n {\displaystyle {\tfrac {2}{n}}} ; these are the widths of the Riemann rectangles (hereafter "boxes").

  8. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve). [43]

  9. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    The integral as the area of a region under a curve. A sequence of Riemann sums over a regular partition of an interval. The number on top is the total area of the rectangles, which converges to the integral of the function. The partition does not need to be regular, as shown here.