Ad
related to: tensile structure of steel
Search results
Results From The WOW.Com Content Network
The world's first tensile steel shell by Vladimir Shukhov (during construction), Nizhny Novgorod, 1895 The Sidney Myer Music Bowl in Kings Domain, Melbourne. In structural engineering, a tensile structure is a construction of elements carrying only tension and no compression or bending.
Structures consisting of both materials utilize the benefits of structural steel and reinforced concrete. This is already common practice in reinforced concrete in that the steel reinforcement is used to provide steel's tensile strength capacity to a structural concrete member. A commonly seen example would be parking garages.
Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Because of its high tensile strength and low cost, steel is one of the most commonly manufactured materials in the world. Steel is used in buildings, as concrete reinforcing rods, in bridges, infrastructure, tools, ships, trains ...
Designers typically adhere to standardised design codes when specifying tension members, which are critical components of structural systems. In the United States, the Steel Construction Manual published by the American Institute of Steel Construction (AISC) is the primary reference for structural steel design, while in Europe, the design is guided by the Eurocodes published by the Comité ...
For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in 2 or pounds-force per square inch. This unit is often abbreviated as psi. One thousand psi is abbreviated ksi. A factor of safety is a design criteria that an engineered component or structure must achieve.
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
However any two or more of the basic structural types described in the following may be combined in a single structure, such as a building or a bridge in order to meet the structure's functional requirements. [1] Tensile structures: Members of tensile structures are subject to pure tension under the action of external