When.com Web Search

  1. Ad

    related to: timoshenko beam theory derivation

Search results

  1. Results From The WOW.Com Content Network
  2. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [1] [2] [3] early in the 20th century. [ 4 ] [ 5 ] The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams , or beams subject to high ...

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    For thin beams (beam length to thickness ratios of the order 20 or more) these effects are of minor importance. For thick beams, however, these effects can be significant. More advanced beam theories such as the Timoshenko beam theory (developed by the Russian-born scientist Stephen Timoshenko) have been developed to account for these effects.

  4. Stephen Timoshenko - Wikipedia

    en.wikipedia.org/wiki/Stephen_Timoshenko

    Thus it is referred to as Timoshenko-Ehrenfest beam theory. This fact was testified by Timoshenko. [21] The interrelation between Timoshenko-Ehrenfest beam and Euler-Bernoulli beam theory was investigated in the book by Wang, Reddy and Lee. [22] He died in 1972 and his ashes are buried in Alta Mesa Memorial Park, Palo Alto, California.

  5. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Simply supported beam with a single eccentric concentrated load. An illustration of the Macaulay method considers a simply supported beam with a single eccentric concentrated load as shown in the adjacent figure. The first step is to find . The reactions at the supports A and C are determined from the balance of forces and moments as

  6. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    Timoshenko improved upon that theory in 1922 by adding the effect of shear into the beam equation. Shear deformations of the normal to the mid-surface of the beam are allowed in the Timoshenko–Rayleigh theory. The equation for the bending of a linear elastic, isotropic, homogeneous beam of constant cross-section under these assumptions is [7 ...

  7. Kirchhoff–Love plate theory - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff–Love_plate_theory

    The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love [ 1 ] using assumptions proposed by Kirchhoff .

  8. Vibration of plates - Wikipedia

    en.wikipedia.org/wiki/Vibration_of_plates

    Vibration mode of a clamped square plate. The vibration of plates is a special case of the more general problem of mechanical vibrations.The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two.

  9. Gun dynamics - Wikipedia

    en.wikipedia.org/wiki/Gun_dynamics

    In both methods researchers have concentrated on the use of Euler-Bernoulli theory for the beam equations, [22] but in some cases Timoshenko beam theory is considered more appropriate, particularly where shear deformations are anticipated to be significant. Although not discussed here, in exceptional cases a finite element analysis using brick ...