When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    A Fibonacci prime is a Fibonacci number that is prime. The first few are: [46] 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. [47] F kn is divisible by F n, so, apart from F 4 = 3, any Fibonacci prime must have a prime index.

  3. List of spirals - Wikipedia

    en.wikipedia.org/wiki/List_of_spirals

    For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by for plotting. [13] [predatory publisher]

  4. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    A Fibonacci spiral approximates the golden spiral using quarter-circle arcs inscribed in squares derived from the Fibonacci sequence. A golden spiral with initial radius 1 is the locus of points of polar coordinates ( r , θ ) {\displaystyle (r,\theta )} satisfying r = φ 2 θ / π , {\displaystyle r=\varphi ^{2\theta /\pi },} where φ ...

  5. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers.

  6. Spiral - Wikipedia

    en.wikipedia.org/wiki/Spiral

    Spirals which do not fit into this scheme of the first 5 examples: A Cornu spiral has two asymptotic points. The spiral of Theodorus is a polygon. The Fibonacci Spiral consists of a sequence of circle arcs. The involute of a circle looks like an Archimedean, but is not: see Involute#Examples.

  7. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. [3] The first few Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... .

  8. Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Mandelbrot_set

    The Fibonacci sequence manifests in the number of spiral arms at a unique spot on the Mandelbrot set, mirrored both at the top and bottom. This distinctive location demands the highest number of iterations of for a detailed fractal visual, with intricate details repeating as one zooms in. [42]

  9. Phyllotaxis - Wikipedia

    en.wikipedia.org/wiki/Phyllotaxis

    With larger Fibonacci pairs, the pattern becomes complex and non-repeating. This tends to occur with a basal configuration. Examples can be found in composite flowers and seed heads. The most famous example is the sunflower head. This phyllotactic pattern creates an optical effect of criss-crossing spirals.