When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scalar potential - Wikipedia

    en.wikipedia.org/wiki/Scalar_potential

    The scalar potential is an example of a scalar field. Given a vector field F, the scalar potential P is defined such that: [1] = = (,,), where ∇P is the gradient of P and the second part of the equation is minus the gradient for a function of the Cartesian coordinates x, y, z. [a] In some cases, mathematicians may use a positive sign in front ...

  3. Gauge fixing - Wikipedia

    en.wikipedia.org/wiki/Gauge_fixing

    A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [citation needed] The existence of arbitrary numbers of gauge functions ψ(r, t) corresponds to the U(1) gauge freedom of this theory. Gauge fixing can be done in many ...

  4. Liénard–Wiechert potential - Wikipedia

    en.wikipedia.org/wiki/Liénard–Wiechert_potential

    The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...

  5. Equipotential - Wikipedia

    en.wikipedia.org/wiki/Equipotential

    In mathematics and physics, an equipotential or isopotential refers to a region in space where every point is at the same potential. [1] [2] [3] This usually refers to a scalar potential (in that case it is a level set of the potential), although it can also be applied to vector potentials.

  6. Scalar field - Wikipedia

    en.wikipedia.org/wiki/Scalar_field

    Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.

  7. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    In the differential form formulation on arbitrary space times, F = ⁠ 1 / 2 ⁠ F αβ ‍ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1-form, = is the current 3-form, d is the exterior derivative, and is the Hodge star on forms defined (up to its orientation, i.e. its sign) by the ...

  8. Potential function - Wikipedia

    en.wikipedia.org/wiki/Potential_function

    The term potential function may refer to: A mathematical function , whose values are given by a scalar potential or vector potential The electric potential , in the context of electrodynamics , is formally described by both a scalar electrostatic potential and a magnetic vector potential

  9. Maxwell's equations in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations_in...

    The electromagnetic field is a covariant antisymmetric tensor of degree 2, which can be defined in terms of the electromagnetic potential by =.. To see that this equation is invariant, we transform the coordinates as described in the classical treatment of tensors: ¯ = ¯ ¯ ¯ ¯ = ¯ (¯) ¯ (¯) = ¯ ¯ + ¯ ¯ ¯ ¯ ¯ ¯ = ¯ ¯ ¯ ¯ = ¯ ¯ = ¯ ¯.