When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    Certain number-theoretic methods exist for testing whether a number is prime, such as the Lucas test and Proth's test. These tests typically require factorization of n + 1, n − 1, or a similar quantity, which means that they are not useful for general-purpose primality testing, but they are often quite powerful when the tested number n is ...

  5. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  6. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    Many fast primality tests are known that work only for numbers with certain properties. For example, the Lucas–Lehmer test works only for Mersenne numbers, while Pépin's test can be applied to Fermat numbers only. The maximum running time of the algorithm can be bounded by a polynomial over the number of digits in the target number.

  7. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2. The sieve of Sundaram sieves out the composite numbers just as the sieve of Eratosthenes does, but even numbers are not considered; the work of "crossing out" the multiples of 2 is done by the final ...

  8. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    But when + is not prime, the first factor becomes zero and the formula produces the prime number 2. [1] This formula is not an efficient way to generate prime numbers because evaluating n ! mod ( n + 1 ) {\displaystyle n!{\bmod {(}}n+1)} requires about n − 1 {\displaystyle n-1} multiplications and reductions modulo n + 1 {\displaystyle n+1} .

  9. Elliptic curve primality - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_primality

    The idea here is to find an m that is divisible by a large prime number q. This prime is a few digits smaller than m (or N) so q will be easier to prove prime than N. Assuming we find a curve which passes the criterion, proceed to calculate mP and kP. If any of the two calculations produce an undefined expression, we can get a non-trivial ...