Search results
Results From The WOW.Com Content Network
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
The standard deviation and the expected absolute deviation can both be used as an indicator of the "spread" of a distribution. The standard deviation is more amenable to algebraic manipulation than the expected absolute deviation, and, together with variance and its generalization covariance, is used frequently in theoretical statistics ...
Thus standard deviation about the mean is lower than standard deviation about any other point, and the maximum deviation about the midrange is lower than the maximum deviation about any other point. The 1-norm is not strictly convex, whereas strict convexity is needed to ensure uniqueness of the minimizer. Correspondingly, the median (in this ...
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
Statistics of the distribution of deviations are used as measures of statistical dispersion. A distribution with different standard deviations reflects varying degrees of dispersion among its data points. The first standard deviation from the mean in a normal distribution encompasses approximately 68% of the data.
The standard deviations will then be the square roots of the respective variances. Since the square root introduces bias, the terminology "uncorrected" and "corrected" is preferred for the standard deviation estimators: s n is the uncorrected sample standard deviation (i.e., without Bessel's correction)