When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triplet loss - Wikipedia

    en.wikipedia.org/wiki/Triplet_loss

    The loss function is defined using triplets of training points of the form (,,).In each triplet, (called an "anchor point") denotes a reference point of a particular identity, (called a "positive point") denotes another point of the same identity in point , and (called a "negative point") denotes an point of an identity different from the identity in point and .

  3. Siamese neural network - Wikipedia

    en.wikipedia.org/wiki/Siamese_neural_network

    The negative vector will force learning in the network, while the positive vector will act like a regularizer. For learning by contrastive loss there must be a weight decay to regularize the weights, or some similar operation like a normalization. A distance metric for a loss function may have the following properties [5]

  4. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Loss functions are implemented as sub-classes of Criterion, which has a similar interface to Module. It also has forward() and backward() methods for computing the loss and backpropagating gradients, respectively. Criteria are helpful to train neural network on classical tasks.

  5. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    The loss incurred on this batch is the multi-class N-pair loss, [12] which is a symmetric cross-entropy loss over similarity scores: ⁡ / / ⁡ / / In essence, this loss function encourages the dot product between matching image and text vectors to be high, while discouraging high dot products between non-matching pairs.

  6. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    Two very commonly used loss functions are the squared loss, () =, and the absolute loss, () = | |.The squared loss function results in an arithmetic mean-unbiased estimator, and the absolute-value loss function results in a median-unbiased estimator (in the one-dimensional case, and a geometric median-unbiased estimator for the multi-dimensional case).

  7. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  8. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...

  9. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).