Search results
Results From The WOW.Com Content Network
Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances. Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting.
The sample complexity of a machine learning algorithm represents ... the sample-complexity is a linear function of the VC ... in order to reduce the cost ...
The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .
Model order reduction aims to lower the computational complexity of such problems, for example, in simulations of large-scale dynamical systems and control systems. By a reduction of the model's associated state space dimension or degrees of freedom , an approximation to the original model is computed which is commonly referred to as a reduced ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Quantum machine learning; ... steps in order to simplify and reduce the complexity of the problem for the actual ... is a monotonic function, ...
The process of feature selection aims to find a suitable subset of the input variables (features, or attributes) for the task at hand.The three strategies are: the filter strategy (e.g., information gain), the wrapper strategy (e.g., accuracy-guided search), and the embedded strategy (features are added or removed while building the model based on prediction errors).
The learning problem with the least squares loss function and Tikhonov regularization can be solved analytically. Written in matrix form, the optimal w {\displaystyle w} is the one for which the gradient of the loss function with respect to w {\displaystyle w} is 0.