When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Injective function - Wikipedia

    en.wikipedia.org/wiki/Injective_function

    In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).

  3. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    Injective composition: the second function need not be injective. A function is injective (one-to-one) if each possible element of the codomain is mapped to by at most one argument. Equivalently, a function is injective if it maps distinct arguments to distinct images. An injective function is an injection. [1] The formal definition is the ...

  4. Inclusion map - Wikipedia

    en.wikipedia.org/wiki/Inclusion_map

    This and other analogous injective functions [3] from substructures are sometimes called natural injections. Given any morphism f {\displaystyle f} between objects X {\displaystyle X} and Y {\displaystyle Y} , if there is an inclusion map ι : A → X {\displaystyle \iota :A\to X} into the domain X {\displaystyle X} , then one can form the ...

  5. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    Functions which satisfy property (4) are said to be "one-to-one functions" and are called injections (or injective functions). [2] With this terminology, a bijection is a function which is both a surjection and an injection, or using other words, a bijection is a function which is both "one-to-one" and "onto". [3]

  6. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    1. easily follows from the open mapping theorem. Alternatively, 1. implies that ′ is injective and has closed image and then by the closed range theorem, that implies has dense image and closed image, respectively; i.e., is surjective. Hence, the above result is a variant of a special case of the closed range theorem.

  7. Immersion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Immersion_(mathematics)

    is an injective function at every point p of M (where T p X denotes the tangent space of a manifold X at a point p in X and D p f is the derivative (pushforward) of the map f at point p). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: [2] = ⁡.

  8. Identity function - Wikipedia

    en.wikipedia.org/wiki/Identity_function

    In other words, the function value f(x) in the codomain X is always the same as the input element x in the domain X. The identity function on X is clearly an injective function as well as a surjective function (its codomain is also its range), so it is bijective. [2] The identity function f on X is often denoted by id X.

  9. Embedding - Wikipedia

    en.wikipedia.org/wiki/Embedding

    Every injective function is locally injective but not conversely. Local diffeomorphisms, local homeomorphisms, and smooth immersions are all locally injective functions that are not necessarily injective. The inverse function theorem gives a sufficient condition for a continuously differentiable function to be (among other things) locally ...