Search results
Results From The WOW.Com Content Network
A wavefront sensor is a device which measures the wavefront aberration in a coherent signal to describe the optical quality or lack thereof in an optical system. There are many applications that include adaptive optics , optical metrology and even the measurement of the aberrations in the eye itself.
The wavelets forming a continuous wavelet transform (CWT) are subject to the uncertainty principle of Fourier analysis respective sampling theory: [4] given a signal with some event in it, one cannot assign simultaneously an exact time and frequency response scale to that event. The product of the uncertainties of time and frequency response ...
Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).
The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1] The sum of these spherical wavelets forms a new wavefront.
On the other hand, if the waves to be superposed originate by subdividing a wavefront into infinitesimal coherent wavelets (sources), the effect is called diffraction. That is the difference between the two phenomena is [a matter] of degree only, and basically, they are two limiting cases of superposition effects. Yet another source concurs: [4]
[3] [4] According to the Huygens–Fresnel principle, each point on a wavefront can be considered a secondary point source of waves, so a new wavefront is formed after the secondary wavelets have traveled for a period equal to one vibration cycle. This new wavefront can be described as an envelope or tangent surface to these secondary wavelets. [5]
From the intensity profile above, if , the intensity will have little dependency on , hence the wavefront emerging from the slit would resemble a cylindrical wave with azimuthal symmetry; If , only would have appreciable intensity, hence the wavefront emerging from the slit would resemble that of geometrical optics.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.